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Abstract—A theoretical analysis is presented for the behaviour after buckling of intermediately
stiffened plates loaded in compression. The loaded and unloaded edges are simply supported but
the unloaded edges are free to wave in the plane of the plates. A semi-energy method of analysis,
based on the von Karman’s compatibility equation and the principle of minimum total potential
energy, is used. The results are presented graphicaily for a range of plate aspect ratios and stiffener
sizes and comparison is made with experimental results.

NOTATION
a length of plate
b,,d stiffener flange width and depth, respectively
t plate thickness
w width of plate subelement
D plate flexural rigidity = Et3/12(1 —v?)
E Young’s modulus of elasticity = 205000 N mm =2
P non dimensional value of load P applied to plate = 2Pw/n*D
P, non dimensional critical buckling load
X,y Cartesian co-ordinates
u,v in-plane displacements in the x and y directions, respectively
u* end displacement at the centroidal axis
U non-dimensional end displacement [4u*w2E/n’aD}
&, &,  membrane strains at a point in the plate in the x and y directions
Ty shear strain in the x—y plane
0.,0, membrane stresses at a point in the plate in the x and y directions
Ty shear stress in the x—y plane
v Poisson’s ratio, taken as 0.3.

Other symbols are defined when they first appear. Primes denote differentiation in the y-direction, e.g.
d%Y/oy™.

INTRODUCTION

A thin steel plate is very flexible when it carries loads which act in the direction of its
normal, but it is extremely stiff when the loads are applied within its plane. It is this rigidity
that is utilised in the design of thin-walled structures. With these structures, the plates,
which form the structures, have to be restrained against out-of-plane distortion or buckling
because of their flexibility in that direction. This restraint can be provided by adding
longitudinal stiffeners to the plates and the combination is well-known as a stiffened plate
panel. Nowadays, stiffened plate panel forms a basic building block of many thin-walled
structures.

A substantial number of investigations have been published on the strength of
longitudinally stiffened steel plates in compression (see for example, Crisfield, 1975;
Little, 1976; Horne and Narayanan, 1977; Webb and Dowling, 1980; Murray, 1983).
Most of these studies are concerned with the strength and design of wide eccentrically
stiffened plates used as compression flanges of steel box girders of built-up bridges.
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In the field of cold-formed steel structures where elements of high width to thickness
ratios are used, intermediate stiffeners are becoming more widely used to reduce local
buckling effects in stiffened plate elements by using these stiffeners to minimise deflections
at the stiffener locations. A very simple way of adding stiffeners to a stiffened plate is to
form corrugations in the plate. It is often advantageous to use several such corrugations or
stiffeners but even one can have a very substantial effect, and may be all that is needed. A
stiffened plate by definition is supported on its longitudinal edges, and when a stiffener is
added between the supports, it is known as an intermediately stiffened plate. The analysis
presented here is restricted to the case of an intermediately stiffened plate with one stiffener
centrally located on one side of the plate.

Research and literature publication on the behaviour of cold-formed narrow inter-
mediately stiffened plates after critical buckling is fairly limited. Konig and Thomasson
(1979) and Desmond et al. (1981) had conducted extensive testings to study the buckling
behaviour of intermediately stiffened elements which formed the compression flanges of
lipped channel sections. In both papers, the prediction of the load carrying capacity of these
sections using the well-known effective width method with some modifications to the basic
effective width equations was reported. In a theoretical study of interactive buckling of
plated structures subject to axial compression using the theory of mode interaction and
finite strip concept, Sridharan (1983) noticed that the catastrophic effects of the local-Euler
buckling interaction of wide stiffened panel were not associated with the interactive buckling
of a narrow intermediately stiffened plate simply supported on its edges. Only the case of
a near coincident buckling of the local and overall modes was presented in his paper.
Bradford (1989) used a nonlinear finite strip theory to investigate the local buckling and
post-local buckling of simply supported plates with a longitudinal stiffener in combined
compression and bending. The elastic post-local buckling stiffness of a longitudinally
stiffened plate was shown to be enhanced by the presence of the stiffener. The stiffener
studied by Sridharan and Bradford is not of the cold-formed type but a conventional
outstand attached to a panel, usually by welding.

Intermediately stiffened plate elements are often used as compression flanges of cold-
formed thin-walled sections. The side plates next to the stiffener, better known as sub-
elements, of these plate elements can experience uniform compressional displacement for
sections under bending or axial loading. For intermediately stiffened plate elements of a
section, the effect of rotational restraint on the plate edges is not so pronounced and the
plate can buckle into more than one half-wave buckle. For this reason, the buckling
behaviour of an intermediately stiffened plate that is simply supported is not radically
different from one that is rotationally restrained at its longitudinal edges. Thus, the
analytical model adopted here is an intermediately stiffened plate simply supported on
both longitudinal edges and the plate subelements subjected to uniform compressional
displacement or loading.

Several modes of buckling are possible in a stiffened panel but for the present analysis,
two modes of buckling distinctly characterize the buckling behaviour of a cold-formed
narrow intermediately stiffened plate in compression. One mode involves the deflection of
the stiffened plate along its length and is known as overall stiffener buckling. This is shown
in Fig. 1. The second mode is when the stiffener remains straight but the plate between the
edge support and the stiffener buckles in short wavelengths as shown in Fig. 2. This is
known as local plate buckling. Due to the inherent nature of an eccentric stiffener, local
buckling can necessarily induce overall stiffener deflections or vice-versa. The interaction
of local plate and overall stiffener buckling modes in a narrow intermediately stiffened plate
simply supported at all edges will be studied theoretically in this paper.

STATEMENT OF THE PROBLEM AND ASSUMPTIONS

The cross section of the intermediately stiffened plate studied is of the form shown in
Fig. 3. The loaded ends are considered to be simply supported. The load is considered to
be applied through the centroidal axis of the full cross section which imposes a uniform in-
plane displacement of u*. The unloaded edges are simply supported and free to move in
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(a) ~ (®) Small stiffener

Fig. 2. Local plate buckling mode.
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Fig. 3. Intermediately stiffened plate.

the plane of the plate, i.e. the in-plane normal stress o, and shear stress 7., have zero values.
On the loaded edge, the shear stress 1, is considered to be zero.

Some simplifying assumptions are made so that the rather complex analysis of the
behaviour of the stiffener and the plate-stiffener junction can be ignored :

1. The stiffener does not buckle locally. Therefore the strain distribution over the
stiffener depth is linear.

2. Torsional stiffness of the stiffener is neglected in the consideration of local plate
buckling.

3. The slope of the plate at the axis of the junction for the stiffener buckling mode is
Zero.

THEORETICAL ANALYSIS

The semi-energy method of analysis is essentially that first used by Marguerre (1937)
and later by Rhodes and Harvey (1971) who applied it to examine the buckling behaviour
of plates. In examining the buckling behaviour of intermediately stiffened elements, the
possibility of plate initiated buckling (local plate buckling) and stiffener initiated buckling
(overall stiffener buckling) occurring either individually or simultaneously is considered.

The theoretical analysis is described with reference to the co-ordinate system shown in
Fig. 4. The section is treated as a system of thin plates, consisting of the plate subelement,
stiffener web and stiffener flange, joined at the edges. The method of approach now is to
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Fig. 4. Co-ordinate system.

postulate a series of deflection functions which describe the buckled form of the plate
subelements and the stiffener and find the compatible stress system using von Karman’s
compatibility equation, to obtain the strain energies of the buckled plate and finally to
utilise the principle of minimum strain energy to obtain values for the coefficients in the
deflection functions. Since the plate subelements are similar and hence have the same
deflected form, one half of the section is considered for convenience.

Deflection functions
The deflections of the plate subelement are assumed to be of the form:

. mrx . hnx
w, = Y(y)sm—a—+YL(y)sm 7 (D
and for the stiffener,
. omax
@, = [Y(9)],~0sin e @
where
N=2
Y(3) = ), AvYn(»)
N=1
N=2
Y.(y) = z ByY, n(y), (3a)
N=1
and

Y =1+G (%)2 + C;(%f
i)l
o Qoel) o)
Y., = (£)+Sg (-fvi)s +ss($)4 +S, (i—)s +8; ({J (3b)

T =
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In eqn (3a), Ay and B, are magnitude coefficients and m and n are the number of
buckles in a stiffener and local plate buckling modes respectively in the x-direction. In eqn
(3b), Y\, Y,, Y., and Y, are the algebraic polynomials describing the deflection form in
the y-direction. Y, describes a predominantly stiffener buckling mode with substantial
stiffener deflection while ¥, describes the stiffener induced simultaneous symmetrical local
plate buckling, the degree of influence being dependent on the flexural stiffness of the
stiffener, as shown in Fig. 1{(c). ¥, and Y, describe the local plate deflections without
stiffener deflections. Since it is well known that flat plate tends to *flatten’ out at the centre
as the postbuckling range is increased, Y, , is chosen to effect the local buckle waveform
changes. The coefficients in the polynomial functions are evaluated through satisfying the
boundary conditions at the supported edges and the plate-stiffener junctions.

The boundary conditions to be satisfied are given as follows:

At the plate-stiffener junction, the slope is zero for the stiffener buckling mode and
there are no deflections for the local buckling mode, i.e.

aty =0, Yi=Y,=0 for stiffener buckling
Y, ,=Y,,=0 forlocal buckling. (4a)

At the unloaded edges the conditions of zero deflection and zero moment must be
satisfied, i.e.

aty = w, w, =0
o, a%,,)
—D(“é'y—z' +v F 0. (4b)

Note that 0’w,/dx? along the edge is zero. Applying eqn (1), it is seen that these
conditions can be satisfied if:

Yi=Y,=Y,=Y,=0 (40)
Yi=Y;=Yi =Y, =0
In addition to the boundary conditions imposed at the edges of the plate subelement,
two more boundary conditions were arbitrarily imposed on the local deflection function
Y, at the middle of the subelement to give the deflected form shown in Fig. 5. As explained
earlier, this function is chosen to effect the flattening at the centre of the plate subelement.
The extra boundary conditions are zero deflection and zero slope at the centre of the
subelement, i.e.
aty = w/2, Y, =Y, =0 (4d)

The coefficients in the polynomial functions of eqn (3b) are evaluated and have the
following values.

C2 . 1.2, C3 = 0.2
D, = —1.66667, D; = 0.66667

K, = —1.42857, K, = 0.42857
S, = —22, S, =61 S,=—60 Ss=20.
W
YLZ
h/\ - : zﬂ_z
i L - " Yy

wi2 w

Fig. 5. Deflection function Y ,.
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While a two-term polynomial function has been selected for each of the buckling
modes, it is assumed that in the post-local buckling range the stiffener buckle form will
remain unchanged and one term is considered to be adequate. Thus only the first term 4,Y,
and the local deflection functions are used. However, a two-term function 4, Yy ie. 4,7,
and A4,Y, will only be used for buckling in the overall stiffener mode when there are no
local plate buckles interacting with the stiffener buckles.

Solution of von Karman'’s compatibility equation

In the analysis of post-local buckling behaviour, the stresses in the middle surface of
the subelement of width, w must satisfy the following equation, derived by von Karman,
from a consideration of the compatibility of in plane and out of plane displacements :

O°F 0*F  0°F ’w, V 0w 6260:!
4 _ s i, (4 _ f4 i4
Vi = it 255t g E[(@x@y) ox? o ©®

where Fis a stress function such that the mid-surface stresses in the plate may be obtained
from its derivatives, i.c.

er _or o
6"_6y2’ W =oxr T ox oy’

The deflections, w,, and in-plane stresses and displacements are related by the following
formulae:

& =

ou 1{dw,Y o 1{0w,Y ou v dw, dw,
S Tyt e

xta\ax ) "Ta T 2\ay =
and

(1+v)
5 o

1 1
&, = E(ax—vay), g = E(oy—vax), Yey = 2

The bending action of the subelement and stiffener about the plate-stiffener com-
bination neutral axis also gives rise to bending strains in the subelement and stiffener which
are shown in Fig. 6.

It can be seen in Fig. 6 that the total strains on the plate subelement are the strain ¢
caused by the imposed in-plane displacement u«* and the strain caused by bending about
the neutral axis, and likewise for the stiffener. Because of the assumption that the stiffener
does not buckle locally and hence the linear strain and stress distribution in the stiffener,
the analysis on the stiffener will be simple. The stress system on the plate subelement is
more complex and the analysis will be shown here first for the subelement. To obtain the
total stress system on the plate subelement after buckling, the stress system due to the in-
plane displacement u* evaluated using the von Karman’s compatibility equation, will be
added to the bending stress due to the bending of the stiffener.

Fig. 6. Bending strains in the plate.



Stiffened plates in uniaxial compression 717

The corresponding stress system on the plate subelement due to in-plane displacement
u* can be obtained as follows.

Substituting one term Y, and two terms Y, in their expanded form into eqn (1) for
w, and subsequently into eqn (5) gives:

En?

ViF=50

2m
{mZA%[(Yq)%L Y, Y+ (Y1)~ Y, ¥") cos ’”‘]

a

2 2

(4 (4 " ’ ’ " 2n7tx

+n? Z Z ByBy |:(YLNYLM+ Y nYiu) + (YinYiuw— YnYim) cos p :|
Ne1 M=1

2 —
+ Y A, By, Yo+ Y, Yin 41 Y oy Y] cos O
N=1
2 o, ) " (n+m)mx
+ Y A\By[2mnY' Y y—m*Y,Yy—n YLNY,I,]COS—a'— . (6)
N=1
Thus a solution for F can be obtained in the form:
2mnx 2nnx X X
F=F,+F,cos 7 +F; cosT +F, cos (n—m); +F; cos (n+m)7, @)
or in a simpler form,
i=5
F=F,+ ) F,cosex, 8)
i=2

where F,, F,, F;, F,, and Fs can be obtained from the following equations :

2 2

~ Enm 2
F} = 2—(12 {mZAf[(Y/I)Z“‘ Y, Y’f]*‘”z Z Z ByBulY nY i+ Yoy Y,I’.M]}a &)

N=1 M=1
. 2mn Y 2mn\' En?
F'f—z(‘a—> F'5+<T> F, = ngmzA%[(Yll)z— Y, Y1), (10)

. 2ne\ . (2nm Y En’ , & 2
F§—2<—‘—1—) 3+<T) Fy= '2?’12 z ByBy(YinYiu—YinYin), (11

N=1 M=1
. n|? nl
F’X—Z[(n—m)z} ’1+|:(n—m);j| F,

En2 2
=247 ZAIBN(zmnY’l i tm*Y Yy +ntY Y1), (12)
N=1

2 4
F’;’—2|:(n+m)§] ’§+[(n+m)g] F,

E7I2 2
=57 Y A\By@mnY | Yin—m*Y,Yiy—n?Y y Y1), (13)
N=1

Since F, is a function of y only, the second derivative, F’; which constitutes a stress in
the x-direction, is the only significant part of F, used in the analysis. For this reason, the
function F, itself needs not be evaluated. By integrating eqn (9) twice, F is obtained as



718 K. H. HooN and J. RHODES

follows :

2

En 2
t= AT Rt 3
a N=1 M

[¥]

ByBy Y nY y+ciy+e,. (14)
i

]

The values of the constants of integration ¢, and ¢, can be obtained by examining the
displacement at the end of the plate subelement.
To examine the prescribed end displacement system, take the displacement equation :

_6_u+1(6&)2
=T 2\ax )

The end displacement u on the plate subelement can be obtained by integrating this
equation in the x-direction, i.e.

. 1{0w,Y
= -\ = . 1
u L[sx 2(6x>]dx (15)
Replacing ¢, by the corresponding stresses and noting that the periodic terms in F of
eqn (7) integrate to zero, the following equation is obtained for u:

a a 7':2 2 2
u=—Fi—-—=|m*AiYi+n* Y Y ByByY.nY.y | (16)
E 4a N=1 M=1
Substituting for F from eqn (14) gives:
a
u = E(C|y+02). (17)

Now the constants ¢, and ¢, can be found by considering displacement boundary
conditions at the loaded ends. Since the plate subelement ends are uniformly compressed,
u is a constant independent of y. Not considering the bending effects of the stiffener for the
time being, the in-plane displacement u at the plate subelement is equal to the end shortening
u* applied at the centroidal axis level. Therefore,

at x = a,
u = constant

= y* since u = u* (displacement due to stiffener bending will be considered later)

then
Cy = 0

E +E
;= —u—=—u*—,
a a

i.e. ¢, is equivalent to the stress required to compress the unbuckled plate by an amount
u*. The negative sign indicates a compressive stress. (u*/a) is equivalent to the applied
strain, &.

Therefore upon specification of an end displacement u*, the constants ¢; and ¢, for
the plate subelement are obtained and one end boundary stress condition is satisfied. The
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other end boundary stress condition is that the shear stress is zero, i.e.

atx=0,a

_@F  (&F, &F .
Ty = —3_3.= — ———axay ax ayei sin e¢;x }.

Since F, is a function of y only then 8°F,/dx dy = 0, and since m and n are integers, ¢;
is also an integer, then sin (¢;) equals zero at x = 0, a. Thus the zero shear stress condition
is automatically satisfied at the loaded ends.

To solve for F,, F;, F, and F, substituting the functions, Y,, ¥, and Y., of eqn (3b)
and their derivatives into eqns (10)—(13), a general solution for each function F,— F, can
be obtained in the form:

Py = o A0, (18)

Fom o S 3 BuBubs, ) (19)
Fom oo 3. 4B, 0) (20)
Fom oo 3. 4By, e

where ¢,, ¢3,,,, P4, and ¢ contain unknown constants, obtained from the complimentary
function solutions of eqns (10)-(13), which are used to satisfy the stress boundary conditions
at the unloaded edges and the plate-stiffener junction. The stress boundary conditions are
that along the unloaded edges and plate-stiffener junction, the shear and normal stresses
have zero values, i.e.

PF _OF

axay o

To avoid the display of rather long complicated expressions in the main text the
evaluation of each ¢ is shown in Appendix I and it is assumed in the remainder of the text
that each ¢ is known. ‘

The stress system in the x-direction on the plate subelement can now be found by
differentiating eqn (7) twice as:

0’F
57=F”= "+ F5 cos e;x+ F3 cos e;x+ F'y cos e, x+ F's cos esw

5
=Fi+ ) Ficose;x. (22)

i=2

At this stage a solution for the stress system on the plate subelement due to in-plane
displacement only has been obtained for a particular u*. It is now necessary to consider the
stresses set up by the bending of the stiffener. It can be shown from simple beam bending
theory that the bending stress induced in the subelement is

02w,
o(3%),
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where 4 is the distance from the neutral axis to the subelement mid-surface as shown in
Fig. 4. The bending strains in the plate subelement and the stiffener are shown in Fig. 6.
And upon substituting of w, from eqn (2) and differentiating gives:

2
—Eh(m> A, sin <@>
a a
Adding to the previous eqn (22), the modified stress system in the x-direction is:

5 2
F"=F{+Y F/ cos eix—Eh(—ri;zr—) A, sin (?) (23)

i=2

Thus the stress system on the plate subelement is completely specified.

The stress system in the stiffener is now described. As the stiffener is assumed to have
no local buckles, the periodic stress system that exists in the plate subelement does not exist
in the stiffener. The strains ¢, and &, in the stiffener web and flange respectively are simply
those due to the applied strain, the membrane and bending strains set up by the deflected
stiffener. The stresses in the stiffener can easily be shown to be:

For the stiffener web,

1{mn\2 mn \2 . [mnx
o, = Eg, = E|:E+Z(7> Al + (—a—) (yy—h)A, sin (T)] (24)

For the stiffener flange,

1 {mn\? mm \2 . [mnx
oy = Egy= E[e+ 3 (7) Al + <T> (d—h)A, sin (—;—)] (25)

The stress function F in the plate subelement and the stress in the stiffener are now
completely known, and the strain energy for the stiffened plate can be evaluated in terms
of the unknown coefficients 4,, B, and B, and the prescribed end displacement, u* or
strain, &.

Evaluation of total strain energy
The elastic strain energy stored in the buckled plate subelement is the sum of that of

bending, ¥, and that of in-plane stresses, ¥, . These energies are given by the following
expressions :

D[ [*|(d’w, 6260,,)2 [62% Do, <62wp>2:|}
V”“ZXEL L {(‘a;?”“ 57 )~ 57 T2 ~\axay) |[9X 9 29

t [ (¥ {(0*F o*F\ 0*F 0°F 0F }
VM,,=2X—2—EJ:) J; {(5)7+5—J/'2) _2(1+V)|:5—)C_257_<M];> ]}dxdy 27

The strain energy contained in the deflected stiffener is the sum of the mid-plane
energies of the stiffener web and flange and they are given as follows:

¢ a d Et a d )
Vs =2%x= o, dxdy; =2x— e dx dy,, (28)
2 [} 0 2 0 1]

t [ b Et [ b R
Vg =2x5 Gyerdxdy, = 2x— gy dx dy,. (29)
2 0 Jo 2 0 Jo
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The sum of ¥, V), Vu, and Vy,now gives the total strain energy, V, in the buckled
stiffened plate, i.e.

V = VB+ VMp + VM_‘- + VM_‘f. (30)

Substitution of w,, F, ¢ and &, into the energy expressions gives the strain energy in
terms of the deflection magnitude coefficients, 4,, By and the prescribed strain ¢, i.e.

2 2 2 2
V=K di+Y Y Y ¥ ByByBpByK,,,,.,+ [Kse+ K4+ K54}
N=1 M1 PZ1 021
2 2 2 2
+ Y Y BuBylKewme+Konul + A} Y. Y ByBuKsnu
N=1 M=1 No1 M=1

2 2
+KyAT+ Z Z A\ByBy K onu+Ki1416+ K567, (31)
N=l M=1

where K, Kyymeg, - - - Ki1 and K, are set out in Appendix II.

By applying the Principle of Minimum Strain Energy, the values of the deflection
coefficients can be evaluated. This is done by differentiating ¥ with respect to each coefficient
(A4,, By) in turn and setting the derivatives to zero. Thus a set of simultaneous and nonlinear
algebraic equations is obtained in the coefficients, the solution of which furnishes the values
of A, and By. Due to the highly nonlinear form of the strain energy, eqn (31) is minimised
using a standard minimisation routine to solve for the unknown coefficients.

Knowing the values of the coefficients corresponding to a given end displacement & or
u*/a, it is possible to obtain expressions for the stresses and deflections at any point on the
plate.

The initial buckling solution can be obtained by eliminating terms to the third power
and above from egn (31) and solving the resultant energy equation.

The total axial load acting on the stiffened plate can be obtained by integrating the
longitudinal stresses over the width of the plate, i.e.

w d 5,2
P=2xt<J‘ a,dy+f asdy,+j asfdy2>
0 0 0
=2t{f< +2F”cose,x Eh( >A 31n—-—->dy
0 i=2
4 1
+EJ (e ( )A?+< )(yl—h)A,sm——>dy1
0 4 a
5,/2 1
+E j <s+z<";"> A%+( )(d h)A, sm——)dyz} 32)
[}

Since the shear stress F;is zero at y =0 and y = w, it can be seen that the periodic
terms, F, cos ¢;x in eqn (32) integrate to zero over the plate width. As the load is independent
of x, the sum of the load that varies with sin (mnx/a) is also zero, i.e.

2 2
E(TE> [—hw+ (d— —hd>+(d—h)-bi:|sin X < 0.
a 2 2 a

Incidentally, the terms in the square bracket give the neutral axis of the stiffened plate.

SAS 31:5-J
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The compressive load is now :

u* b, 1 (ma\'| [, b s
P= 2[E{—;<W+5+d)+z<7> [:J; Yidy+ 3 +d:|A

1(nn) & 2 "

N=1M=1

Now a value of load is known for the stiffened plate corresponding to a specified end
displacement. To obtain the complete post-buckling behaviour of the plate, the procedure
outlined is repeated for a number of discrete increments of end displacement u* applied to
the centroidal axis.

A brief mention of analysis on overall stiffener buckling only

It has been mentioned earlier that the theoretical analysis is based on local plate
initiated post-local buckling with the local plate buckles and stiffener buckles interacting at
different buckle wavelengths. Plates with relatively weak stiffener will exhibit stiffener
initiated post-stiffener buckling behaviour. It is possible that the instability of the stiffener
will induce simultaneous symmetrical local buckles of the plate subelement of the same
wavelength. In this case, the analysis is quite straight-forward, following the procedure just
described. The plate deflection function will simply be :

. mux
w, = Y(y)smT,

where Y(y) consists of two polynomial terms Y, and Y, found in eqn (3b).

The analysis is now complete and the behaviour of an intermediately stiffened plate
can be observed theoretically. It is noted that as well as the facility of the theoretical solution
to provide a continually changing buckled form throughout the post-buckling range,
changes in local buckle wave-length may also be taken into account. This can be achieved
by utilising the number of local buckles, n, as an additional variable parameter in the
minimisation process. It is also noted that the number of buckles in the stiffener buckling
mode is the one which gives the minimum buckling load with the lowest number being
one. Flat plate results can also be easily obtained by simply letting the dimensions of the
stiffener be zero values.

TYPICAL RESULTS

A number of theoretical results are presented here in nondimensional form. The
nondimensional parameters used in the figures are defined in the Notation. The length, q,
subelement width, w, and stiffener flange width, b,, are kept constant while the thickness, ¢
and the stiffener depth, d, are varied to show the effects of the parameters on the buckling
behaviour of the stiffened plate. The plate dimensions are in millimetres.

The elastic effects of varying the stiffener depths on the load displacement behaviour
of the stiffener buckling mode are shown in Fig. 7. For comparison, the behaviour of a flat
plate is also shown. Since the stiffener is only on one side of the plate, two possible directions
for the overall stiffener buckling must be considered, namely bowing in the direction of the
stiffened side (stiffener flange in tension) and bowing in the opposite direction (stiffener
flange in compression). Therefore in the figure, for each stiffener size, there are two post-
buckling solutions, i.e. one with positive stiffener deflections and the other with negative
deflections. The large positive deflections cause the stiffener to shed its load and the whole
plate behaves like a plate without a stiffener but with an increased initial buckling load.
The negative deflection curve shows similar behaviour to a cylinder under compression with
the load dropping immediately after buckling and rising to equal the stiffness of the positive
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Fig. 7. Elastic post-stiffener buckling behaviour.

case in the far post-buckling range, the increase in stiffness being provided by the tensile
stresses set up in the plate due to the bending of the stiffener.

In local plate buckling only, it would be expected that the addition of a stiffener will
increase the initial buckling load as well as the post-buckling stiffness of the plate. The
elastic behaviour of increasing the stiffener depth is shown in Fig. 8.

Figure 9 shows the post-buckling behaviour which arises on the simultaneous occur-
rence of both local plate and stiffener buckling modes of different buckle wavelengths
compared with either the local plate buckling only or stiffener buckling only. The reduction
in load from the onset of initial buckling of the interaction mode (shown by curve 2) as
compared with the local buckling mode only (curve 1) is due to the deflection of the stiffener
induced by local buckling. However, this interaction is not necessarily true for the stiffener
initiated buckling, as shown by the lower curves of the same figure. Here, the post-buckling
behaviour of a plate with a flexually weak stiffener is shown for the stiffener buckling mode
with positive and negative solutions and the interaction mode. Local buckles only start to
form and interact with the positive stiffener buckles, shown at point A4, at loads away from
the initial buckling load. It can be seen that the two curves are not significantly different
from each other. In contrast, there is no interaction in the negative case.
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Fig. 8. Elastic post-local buckling behaviour,
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Fig. 9. Effects of interaction of overall stiffener and local plate buckling.

In view of the above observation, it will be rational, as far as the stiffener buckling
mode is concerned, to assume that the stiffened plate will behave in a manner that gives the
lower stiffness. Hence, the negative stiffener deflection solution is adopted for this mode.

The effects of varying the width to thickness ratio and stiffener depth on the post-
buckling behaviour are shown in Figs 10-12. In Fig. 10, for a small w/? ratio of 62, stiffener
buckling is the predominant buckling mode. It is interesting to note that in Figs 11 and 12
with stiffener depths of 7 and 6 mm, respectively, a sudden drop in post-buckling stiffness
after point A4 is shown. Both stiffened plates in fact have stiffeners of sufficient rigidity
against stiffener buckling but do not seem to be able to sustain their stiffness at high loads.
The effect of such a stiffener with sufficient rigidity against initial stiffener buckling but not
against failure by this mode is best illustrated by Fig. 13.

In Fig. 13 the local plate-initiated interaction mode is shown by curve 1. Though the
stiffener buckling mode has a higher initial buckling load, its post-buckling stiffness is much
lower than the interaction mode and hence the load path has to follow curve 2 at higher
loads.

The influence of stiffener depths with changing buckle half wavelength in the post-
buckling range is shown in Figs 14 and 15. The solid lines shown in these figures represent
post-buckling solutions with the buckle wavelength taken at critical buckling while the
broken lines show results with changing buckle wavelength. It is known that simply sup-
ported flat slender plates that are prone to local buckling will experience changing buckle-
wavelength in the far post-buckling range if the plate aspect ratio is very high and in
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Fig. 10. Interaction buckling—low w/? ratio.
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Fig. 11. Interaction buckling—medium w/¢ ratio.
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Fig. 13. Stiffener of adequate rigidity against initial buckling but not failure.
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Fig. 14. Effects of changing local buckle wavelength—medium w/r ratio.

consequence a lower stiffness in this range. This effect of reducing post-buckling stiffness is
shown in Figs 14 and 135 for the flat plate results. It is obvious that larger stiffener will
provide adequate support to the plate subelements and these plate subelements will behave
effectively as long individual simply supported plates and are therefore more susceptible to
the influence of changing buckle wavelength. This is evident in Figs 14 and 15 which show
that changing buckle half wavelength has a significant effect on plates having larger stiffeners
at far post-buckling range.

Figure 16 shows the deflections occurring at the crest of a buckle at different load levels
for the stiffener buckling mode.

The longitudinal membrane stress distributions around the section are shown in Figs
17 and 18 for the same loading magnitudes as in Fig. 16. Stresses at the node of this buckle
are shown in Fig. 17 and at a crest in Fig. 18. Stresses on the stiffener are not shown on
the crest as they are the same ones on the node as no local buckling is assumed to occur
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Fig. 15. Effects of changing local buckle wavelength—high w/? ratio.
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Fig. 17. Growth of membrane stress distribution at node of stiffener buckle—stiffener buckling
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Fig. 18. Growth of membrane stress distributiox(]l at crest of stiffener buckle—stiffener buckling
mode.

here. The large reductions in membrane stresses from the supported edge to the stiffener
junction indicates a loss of effectiveness of this stiffener in load carrying. The stress patterns
shown are very similar to that of a simply supported thin plate without a central stiffener.

Stiffener deflections occurring immediately after initial local plate buckling for a plate
with a larger stiffener can be seen in Fig. 19. The membrane stress distributions at the
buckle node and crest of a central local buckle for this plate are shown in Figs 20 and 21,
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Fig. 22. Comparison of theory and test results. Fig. 23. Comparison of theory and test results.

respectively. The stress level at the stiffener junction is almost the same as that at the
supported edge indicating the effectiveness of this stiffener to withstand high loads. Large
reductions in membrane stresses in the central portion of the plate subelement are conse-
quences of large local buckling effects on this portion.

COMPARISON WITH EXPERIMENT

A series of tests on intermediately stiffened plates was carried out to verify the validity
of the analysis developed here. The method of manufacture and testing of these steel plates
is described by Hoon et al. (1993). The test apparatus had the capability of measuring the
applied load, P and the end displacement, #*. Comparisons of the sample results of the
buckling behaviours obtained from tests and those predicted by the analysis are shown in
Figs 22 to 24. Figure 22 shows comparison where the stiffener is small and stiffener buckling
is the predominant mode. There is a disparity between the theoretical and experimental
results, especially at and around the buckling load. This disparity arises chiefty because the
analysis does not take into account the initial geometric imperfections which are present in
the actual plate. The current analysis can be modified to take initial imperfections into
account but this will not be discussed in this paper. However, it is well-known that the
effects of initial imperfections are most marked at or around the theoretical buckling load.
At loads substantially greater than the buckling load, effects of imperfections on the plate
behaviour are small. As can be seen in Fig. 22, the post-buckling slope of the curve for the
theoretically perfect plate is more or less parallel to the experimental path. Figure 23 shows
the comparison of a stiffened plate with a stiffener that offers sufficient rigidity against
stiffener buckling initially but not at higher loads. The theoretical post-buckling slope is in
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Fig. 24. Comparison of theory and test results.
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fair agreement with the experimental one. Very good correlation is observed in Fig. 24 for
a stiffened plate with a larger stiffener.

CONCLUSIONS

A theoretical analysis has been presented for the post-buckling behaviour of simply
supported intermediately stiffened plates under uniaxial compression. Stiffener-initiated
and local-plate-initiated buckling and their interaction were investigated.

A series of load-shortening curves has been given for plates with different w/z ratios
and stiffener sizes, and the plate out of plane deflections and membrane stress distributions
were presented for each mode of buckling. The main points arising from the results may
be summarized as follows:

1. In the stiffener buckling mode, the direction of the deflected stiffener influences the
plate behaviour. The worst situation occurs when the stiffener bows away from the stiffened
side of the plate.

2. The use of flexurally large stiffeners retards the post-buckling deflections of the
stiffeners. The onset of local plate buckling will always induce some deflections of these
eccentric stiffeners.

3. A stiffener that is sufficiently rigid against stiffener buckling may not necessarily
continue to resist this mode of buckling at higher loads.

Finally, the present analysis is seen to compare favourably with the experimental
results.
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APPENDIX 1

Derivation and solution of the stress function ¢

The procedure for obtaining each ¢ is similar to that used by Rhodes and Harvey (1971) and the details are
shown as follows. The procedure for solving ¢ is illustrated here for the most general function F;. The relevant
equations of F; are listed here for convenience and they are:

i 2nm\? nn\ En? | 2 2
F3 .—2<_a—) F’§+(‘a_> Fy = s=n’ Z 2 BBy (YinYiu—YinYia0), (A1)

7
2a N=1M=1

En? 2 2
F, =W"2 Z Z= BNBM¢JNM(y)' (A2)

N=1 M=1
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The defiections functions Y, can for simplicity be expressed in the general algebraic series form such that:

N y
=¥ cn(2]. s

Note that for all the deflection functions in eqn (3b) can be easily converted to this form.
Substituting into eqn (A1) gives:

) ., En? 2 2 ror1 ¥ +g-2
Fy—2eiFi+elFy ==5n? 3 3 BuBy ¥ ZFC,Nch[pq—q(q—u](;)’ L »e

N=1M=1 p=0g=0

and letting s = p+4g—2, eqn (A4) can be written simply as:

) - N E1C2 ) 2 2 20—-1) 1 y \S
F3—2e3F +e3F, =2" ’Z:l ME‘:IBNBM .v;o ﬂ3,~y? wl’ (AS)
where :
g=r
Bsu = 2 Corr-gnCoulg(s+2—-9)—a(g—DI.
0
Substituting eqn (A2) into eqn (AS) gives:
. 200-1) y 9
S 26385, ¢80, = T ﬂ(;) (A6)
Solving eqn (A6) gives the particular integral solution :
Ar—-1) y s
$3= L Dol (A7)
s=0
where I';  is obtained from the expression :
Boe  2(s+1)(s+2) s+ D(s+2)(s+3)(s+4)
F3;~u = e; + w2e§ r3(a+zmu - w"e‘; r3u+ HNM? (AS)

I';,, must be evaluated froms = 2(r—1)tos=0and if s > 2(r— 1), then I'; = 0.

The complementary function to equation (A6) must now be added. With ‘this addition, the complete solution
for ¢, is given by:

2(r—1)

. y .
b3, = ,:Z'o r%m(%) +C,,,, coshe; y+C,  sinhe;y+ C3;~u<;) coshe;y+ C‘m;(%) sinhe,y. (A9)

The constants C,,  —C,, . are evaluated by considering the stress boundary conditions. Satisfaction of the
stress boundary conditions at the plate edges proceeds as follows.
On the unloaded edges the normal and shear stresses have zero values, i.e.
o*F  9'F

- Ral v

These conditions are satisfied if :
@3, = 05,=0 at y=w.

At the plate-stiffener junction, since it is assumed that the ‘built-up’ stiffener does not buckle locally, the
stress in the stiffener is constant in the x-direction. The boundary conditions are simply that of zero normal and
shear stresses at the junction. The neglect of a more rigorous boundary condition does not mean that the accuracy
of the solution is greatly affected. It had been shown by Marquerre (1937) that strict adherence to the tangential
stress boundary conditions makes no appreciable increase in the solution, though it has a marked effect on the
values of the maximum edge stress at these edges. Therefore,

$3, =95, =0 at y=0.

By applying the boundary conditions for ¢;,, and ¢; , the constants C,, —C,, are found to be:
C‘er = —FOSNM

B T'JNMT33

Zanu eswcosh e;w+ To, Ty, —e3wTy,

SINM

T, Ta,+ o, ewsinh e;w—X T,
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Cyy = =y —ewCa

=INM
C,, =T, 72,0 (AL10)

ERTET

where

Ty, = (I"OW cosheyw+T,,, coshesw—2 qu)/sinh e3w
T, = (e;w cosh e;w—sinh e;w)/sinh e;w
T,, = e;w cosh e;w+-sinh esw

T,, = eswsinh e;w+-cosh eyw. (AlD)

The solution for ¢, is now complete.
Similarly, the procecfﬁre just described for solving ¢, is applied to ¢,, ¢,, and ¢, by replacing the relevant
suffices in the preceding equations, for example,

27— 1)

¢s, (0 = b 1"5‘( )+C,wcoshe,+C25hs:nhe5y+C3m( )coshesy+C45N( )smhesy
s=0

APPENDIX 1

Expressions of the constants in the total strain energy expression
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